logo
logo
Главная
Главная
О нас
Упражнения
Упражнения
Тарифы
Блог
ai icon
ai icon
Помощник
ai icon
ai icon
Помощник

Ломаная линия: что это такое, виды и примеры

Время чтения ~ 8 мин
2 мая 2024

Ломаная линия: что это такое, виды и примеры

Время чтения ~ 8 мин
2 мая 2024
post_background

Ломаной линией называется геометрическая фигура, состоящая из отрезков, которые соединяются друг с другом своими концами, но не пересекаются между собой внутри. Каждый из этих отрезков называется звеном ломаной линии, а их концы – вершинами ломаной.

В первом классе дети изучают простые ломаные линии, состоящие из двух или трех отрезков. Они учатся распознавать такие ломаные на рисунках, а также строить их с помощью линейки и карандаша.

Чем старше возраст школьника, тем больше информации он будет получать на уроках математики о ломаной.

Какие бывают ломаные линии

Что такое ломаная в математике? Это интересная фигура. Она бывает разной:

состоять из любого количества отрезков;
простой или сложной. Простая ломаная состоит из звеньев, которые не пересекаются друг с другом, в то время как сложная ломаная может иметь самопересечения;
замкнутой или открытой. Замкнутая ломаная линия образует многоугольник, у которого начальная и конечная вершины совпадают, в то время как у открытой ломаной они различны;
находит широкое применение в различных областях. Например, в архитектуре ломаные используются для создания сложных форм зданий и сооружений. В технике они применяются для описания траекторий движения различных объектов, например, в робототехнике, авиации и космонавтике;
с равными и неравными звеньями. Звенья ломаной – это отрезки, из которых она состоит. Если все звенья ломаной имеют одинаковую длину, то такая ломаная называется ломаной с равными звеньями. Если же есть хотя бы одно звено, отличное по длине от остальных, то ломаная считается имеющей неравные звенья;
плоской и пространственной. Плоская ломаная лежит в одной плоскости. Пространственная ломаная не ограничена одной плоскостью;
самопересекающейся и непересекающейся. Если ломаная пересекает сама себя, то она является самопересекающейся. Если же ни одно из звеньев ломаной не пересекается с другими звеньями, то такая ломаная является непересекающейся;
многоугольной и не многоугольной. Многоугольная ломаная образует многоугольник. Не многоугольная ломаная многоугольник не образует;
выпуклой и вогнутой. У выпуклой ломаной все звенья лежат по одну сторону от прямой, проходящей через две любые соседние вершины ломаной. Вогнутая ломаная – наоборот, имеет звенья по разные стороны от такой прямой.

Все эти виды ломаных играют важную роль в математике и применяются в различных ее областях, таких как геометрия, алгебра, тригонометрия и других.

Из ломаных линий можно построить множество геометрических фигур. Вот некоторые из них:

треугольник;
четырехугольник;
квадрат;
пятиугольник;
шестиугольник;
семиугольник;
восьмиугольник;
многоугольник.

Как измерить длину ломаной

post_background

В школе детям предлагается ручной метод измерения длины ломаной. Это легко сделать с помощью линейки.

Составили инструкцию.

    Приложите линейку к первому отрезку ломаной так, чтобы нулевая отметка совпала с началом отрезка.
    Посмотрите, какое число на линейке соответствует концу первого отрезка. Это будет длина первого отрезка.
    Повторите процесс для каждого следующего отрезка ломаной, начиная с шага № 1.
    Сложите длины всех отрезков, чтобы получить общую длину ломаной.

Задачи на ломаную

post_background

Давайте закрепим эту инструкцию на практике. Мы подготовили для школьника несколько задач, чтобы научиться измерять разные виды ломаных линий. 2 класс это, первый, третий или четвёртый, на самом деле значения не имеет. Главное, чтобы ребёнок понял алгоритм действий.

Задача № 1.

Условие: ломаная состоит из трёх отрезков. Длина первого – 3 см, второго – 5 см. Найдите длину третьего отрезка, если известно, что длина всей ломаной - 11 см.

Как решать: для того, чтобы найти длину третьего отрезка, нам необходимо сложить длины известных. Это 3 плюс 5. Получили 8 с. Затем мы вычитаем найденное число из длины всей ломаной: 11 минус 8. Получаем 3. Значит, длина третьего отрезка равна трём сантиметрам.

Задача № 2.

Условие: ломаная АВС состоит из двух отрезков, АВ = 10 см, ВС = 6 см. На сколько сантиметров отрезок ВС короче, чем АВ?

Как решать: нам необходимо найти разницу между длиной отрезков. Для этого необходимо от 10 отнять 6: 10 – 6 = 4. Таким образом мы вычислили, что в ломано АВС отрезок ВС короче отрезка АВ на 4 сантиметра.

Задача № 3.

Чем старше становится школьник, тем усложняется и решение задач на ломаную. Покажем вам, как находить ответ через «х».

Условие: ломаная состоит из трёх отрезков. Длина первого – 4 см, второго – 10 см. Найдите длину третьего отрезка, если известно, что длина всей ломаной – 20 см.

Как решать: для решения данной задачи нам необходимо составить уравнение, в котором сумма длин всех отрезков будет равна длине всей ломаной, то есть 20 сантиметрам. Пусть x – длина третьего отрезка. Тогда мы можем записать следующее уравнение: 4 + 10 + x = 20.  Решая данное уравнение, получаем:

14 + х = 20.

x = 20 - 14

x = 6

Таким образом, длина третьего отрезка равна шести сантиметрам.

Решать эти и другие задачи на ломаные можно в этом разделе математики.  

Что такое ломаная в математике: как понять это с помощью сказки

post_background

Психологи говорят о том, что тематические сказки могут быть очень полезны для детей при изучении различных наук. Они помогают школьникам лучше понимать сложные концепции и идеи, а также развивают их интерес к науке. Кроме того, такие сказки могут помочь детям научиться решать проблемы и развивать критическое мышление.

Поэтому мы придумали для школьников и в помощь родителям сказку «Приключения ломаной линии».

Важно: перед тем, как начать её читать, попросите ребёнка запоминать все геометрические фигуры, которые он услышит и рисовать их на бумаге.

Однажды в геометрическом мире жила-была Ломаная линия. Её так и звали. Она была необычной – её звенья были все разного размера и формы. Но несмотря на это, ломаная была очень дружелюбной и любознательной.

Однажды Ломаная линия решила отправиться в путешествие по геометрическому миру. Ее друзья, прямые линии, окружности и треугольники, были удивлены её решением, но все же пожелали ей удачи.

Ломаная линия отправилась в путь. Она шла по полям, горам и лесам, встречая на своём пути много интересных геометрических фигур.

Однажды наша путешественница встретила прямоугольник, который рассказал ей о своем прямоугольном королевстве.

Затем она познакомилась с кругом, который показал ей, как можно кататься на колесе обозрения.

Но самое интересное приключение ждало её впереди. Ломаная линия попала в королевство многоугольников, где познакомилась со своим новым другом – пятиугольником. Они вместе играли в геометрические игры, гуляли по парку многоугольников и даже участвовали в конкурсе «Кто быстрее обойдет все многоугольники»

Путешествие Ломаной линии закончилось благополучно. Она вернулась домой, полная новых знаний и впечатлений. Её друзья были рады ее возвращению и устроили большой праздник.

С тех пор ломаная стала еще более известной и уважаемой в геометрическом мире. Её история о путешествии стала легендой, которую рассказывали маленьким Ломаным линиям, чтобы они знали, что даже если ты отличаешься от других, ты все равно можешь найти свое место в мире и быть счастливым.

Проверьте задание, о котором мы говорили перед сказкой. Интересно, сколько геометрических фигур уловил на слух ваше ребёнок?!

Тему творческого изучения видов ломаной продолжим веселыми историями.

История № 1.

Две ломаные линии поспорили, кто из них более гибкая и может принимать более сложные формы. Они решили провести соревнование, в котором победила та ломаная, которая смогла принять форму квадрата.

История № 2.

Ломаная линия однажды заблудилась в лабиринте, пытаясь найти выход. Она наткнулась на множество тупиков и углов, но в конце концов смогла найти выход благодаря своей гибкости и умению адаптироваться к сложным условиям.

История № 3.

Однажды две ломаные линии встретились на перекрестке. Одна была веселой и озорной, а другая - строгой и правильной. Они начали спорить о том, кто из них лучше, и в конце концов решили устроить соревнования. Веселая ломаная победила, потому что она была более гибкой и непредсказуемой.

Тест на внимательность: какие бывают ломаные линии1 класс

Мы не просто так отметили первый класс. Совмещать математику с таким предметом, как окружающий мир, можно и самым маленьким школьникам.  Дети научаться любить математику и не воспринимать её как сложный предмет из школьного учебника.

Предложите ребёнку увидеть ломаные линии вокруг себя, в природе в целом.

Напомним, что ломаные линии - это такие линии, которые состоят из нескольких отрезков. Где же они находятся?

Ветви деревьев

Это один из самых ярких примеров ломаных линий в природе. Они состоят из множества маленьких отрезков, каждый из которых - это часть ветки.

Заборы, ограды и другие строительные конструкции

Они также состоят из ломаных линий, потому что они собраны из отдельных столбов и перекладин.

Горные хребты

А также другие неровные поверхности также могут быть представлены ломаными линиями. Это происходит потому, что они состоят из множества вершин и впадин.

Дороги и тропинки

Они также могут быть изображены ломаными линиями, потому что они часто имеют извилистую форму.

Здания и сооружения

Могут иметь ломаные формы, особенно если они имеют сложную архитектуру.

Вывод: ломаные линии окружают нас повсюду. Могут быть как природными, так и созданными человеком, и они помогают нам лучше понимать форму и структуру окружающего мира.

Кстати, прокачать сразу несколько школьных предметов вы можете на образовательной платформе iSmart.org

Ломаная линия и другие темы: как улучшить усвоение математики у младших школьников

post_background

Математика является важным предметом для развития умственных способностей ребенка. Однако не все дети одинаково хорошо усваивают этот предмет. Бывает, что проблемы возникают даже «на ровном месте», как говорят впечатлительные мамы.

Мы собрали советы по улучшению усвоения математики, которые по отзывам родителям являются эффективными:

используйте наглядные материалы. Визуализация математических понятий помогает детям лучше их понять и усвоить. Применяйте рисунки, схемы, таблицы и другие наглядные материалы для объяснения новых тем;
предлагайте практические задания. Чтобы ребенок лучше понял математические понятия, давайте ему возможность применить их на практике. Например, попросите школьника решить задачи на те же ломаные линии, используя реальные предметы в доме;
повторяйте и закрепляйте материал. После изучения новой темы обязательно повторите и закрепите ее с ребёнком. Можно использовать игры или задания на повторение пройденного материала.
развивайте логическое мышление. Учите ребёнка анализировать, сравнивать, обобщать и делать выводы. Это поможет ему лучше понимать математические понятия и применять их в жизни;
разбивайте сложные темы на маленькие шаги. Младшим школьникам сложно усваивать большой объем информации за один раз. Разбейте сложные темы на небольшие части и объясните каждую из них отдельно. Это поможет детям лучше понять и запомнить материал.

Следуя этим советам, вы поможете школьнику лучше усваивать математику и развивать свои умственные способности. Однако всё это работает, если у родителей есть время полноценно заниматься образованием ребёнка. А так как в большинстве случаев родители заняты на работе, можно поручить это профессиональным учителям, которые на образовательной платформе iSmart помогут школьнику осваивать учебный материал и готовиться к контрольным работам по математике.

Образовательная платформа может помочь ребенку изучать математику в младших классах следующими способами:

интерактивные уроки. Платформа iSmart может предложить интерактивные задания по математике, которые позволят ребёнку обучаться в игровой форме;
мотивация к обучению. Здесь предоставляют награды и демонстрируют достижения за выполненные задания;
обратная связь. Образовательная платформа iSmart может предоставить обратную связь о прогрессе ребёнка, что поможет ему понять, какие темы нужно улучшить.

Начать можно прямо сейчас.

Ломаная линия - как элемент компьютерной графики

Многие мамы огорчены зависимостью детей от гаджетов. Но можно использовать увлечение во благо. К примеру, рассказать ребёнку, что в компьютерной графике ломаные линии широко используются для создания различных 3D-объектов и анимаций. Они представляют собой набор вершин, то есть точек, соединенных отрезками, то есть ребрами. Используя различные алгоритмы, можно создавать сложные трехмерные модели, состоящие из миллионов вершин и ребер.

Ломаные линии играют важную роль в создании анимаций, так как они позволяют моделировать движение объектов и изменение их формы во времени. Например, можно создать анимацию автомобиля, который движется по дороге, используя ломаные линии для моделирования движения колес и кузова автомобиля.

Одним из наиболее распространенных способов использования ломаных линий в компьютерной графике является создание полигональных моделей. Полигональная модель – это трехмерный объект, состоящий из множества многоугольников, каждый из которых представляет собой ломаную линию с тремя или более вершинами. Такие модели могут быть визуализированы с использованием различных методов, таких как растеризация, трассировка лучей или применение эффектов глубины резкости.

Также ломаные линии используются в алгоритмах визуализации для определения того, какие объекты находятся ближе или дальше друг от друга. Это позволяет создавать реалистичные изображения и анимации с учетом глубины сцены.

Собрали интересные задания на ломаные линии, которые изменят представления вашего ребенка о скучной математике здесь. Регистрируйтесь на платформе iSmart и начинайте заниматься.

avatar
АвторЕкатерина Кондратьева
okIcontelegramIconvkIconwhatsappIcon

Читать также

Thu, 02 May 2024 10:05:10 GMT_dac8705a-23b6-40be-b6ac-b4ea5b39ae31.jpeg
ТикТок: гайд для родителей по самой популярной социальной сети 2022 года
Время чтения ~ 7 мин
Если мы попросим вас назвать три приложения, в которых ваш ребёнок проводит больше всего времени с 90%-й вероятностью на первом месте будет ТикТок. 20,2 млн человек в месяц
Thu, 02 May 2024 10:05:10 GMT_7d773135-08c2-43bd-a27b-31c42b11dab4.png
5 когнитивных искажений, о которых надо знать детям и взрослым
Время чтения ~ 5 мин
«Это… не то, что ты подумал» — фраза из анекдота и… правда жизни. У нашего мышления есть свои «баги», и если знать о них заранее, можно уберечь себя от ошибок. Топ-5 ошибок мышления, о которых надо обязательно рассказать вашему ребёнку (а может, и коллегам), ждут вас в этой статье.
Thu, 02 May 2024 10:05:10 GMT_b6a10c53-fa6c-4402-a137-f3a161dba3b0.jpg
Книги для подростков. Часть 1
Время чтения ~ 4 мин
Хотите выбрать ребёнку подходящую книгу? Для вас наш нетривиальный список, в котором найдётся роман для любого подростка.
Литература
Полезные книги
Thu, 02 May 2024 10:05:10 GMT_9940ed01-e175-466e-a889-2b59ed73f56a.png
Как ребёнку стать креативным и лучше учиться. 31 нескучная идея
Время чтения ~ 11 мин
Развитие креативности повышает у детей стремление получать и применять новые знания, выстраивать хорошие отношения с учителями и другими учениками и благополучно решать проблемные ситуации в учебном процессе. Мы собрали для вас 31 интересную идею, которые в игровой форме помогут вашему ребёнку развивать своё творческое мышление легко и приятно.
Родителям
Лайфхаки
Thu, 02 May 2024 10:05:10 GMT_f6955011-1fb7-4aa8-a709-dbd3eecd5d73.jpeg
Зачем нужно готовиться к ВПР
Время чтения ~ 2 мин
Головная боль родителей: зачем нужны ВПР и как к ним готовиться Многие родители произносят аббревиатуру ВПР почти с придыханием и делают тревожные глаза. Что их так в этом пугает? Объясняем, Всероссийские проверочные работы (ВПР) — стандартизированный мониторинг, который проводится во всех регионах России для оценки знаний школьников. Делимся опытом, как подготовиться к ВПР.
Thu, 02 May 2024 10:05:10 GMT_60d0a757-854b-4460-afd0-4fbdc9b16072.png
Расписание звонков в школе в 2023 году
Время чтения ~ 3 мин
Внутренний распорядок школы зависит от того, какое расписание звонков рекомендует СанПин с учётом возраста детей и соответствующей ему нагрузки. При составлении расписания школа опирается на установленные законом нормы продолжительности уроков и перемен. Мы собрали для вас актуальное расписание звонков на текущий учебный год.
Родителям
Поддержка успеваемости 24/7 без репетиторов
logo
8 (800) 600-44-02
141082, МО, г. Королев, ул. Лесная, д.14Б
О нас
AI помощникNew
Лицензия
youtubeIconokIcondzenIconvkIcon
iSmart — образовательная платформа. Внесена в Реестр российского ПО, реестровая запись №22517 от 14.05.2024.
Техническая служба поддержки: support@ismart.org
© iSmart, 2018-2024